Partially Observable Markov Decision Processes in Robotics: A Survey
نویسندگان
چکیده
Noisy sensing, imperfect control, and environment changes are defining characteristics of many real-world robot tasks. The partially observable Markov decision process (POMDP) provides a principled mathematical framework for modeling solving control tasks under uncertainty. Over the last decade, it has seen successful applications, spanning localization navigation, search tracking, autonomous driving, multi-robot systems, manipulation, human-robot interaction. This survey aims to bridge gap between development POMDP models algorithms at one end application diverse other. It analyzes these connects them with algorithmic properties effective solution. For practitioners, some key task in deciding when how apply POMDPs successfully. algorithm designers, new insights into unique challenges applying systems points promising directions further research.
منابع مشابه
Partially observable Markov decision processes
For reinforcement learning in environments in which an agent has access to a reliable state signal, methods based on the Markov decision process (MDP) have had many successes. In many problem domains, however, an agent suffers from limited sensing capabilities that preclude it from recovering a Markovian state signal from its perceptions. Extending the MDP framework, partially observable Markov...
متن کاملBounded-Parameter Partially Observable Markov Decision Processes
The POMDP is considered as a powerful model for planning under uncertainty. However, it is usually impractical to employ a POMDP with exact parameters to model precisely the real-life situations, due to various reasons such as limited data for learning the model, etc. In this paper, assuming that the parameters of POMDPs are imprecise but bounded, we formulate the framework of bounded-parameter...
متن کاملQuantum partially observable Markov decision processes
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We present quantum observable Markov decision processes (QOMDPs), the quantum analogs of partially observable Marko...
متن کاملInducing Partially Observable Markov Decision Processes
In the field of reinforcement learning (Sutton and Barto, 1998; Kaelbling et al., 1996), agents interact with an environment to learn how to act to maximize reward. Two different kinds of environment models dominate the literature—Markov Decision Processes (Puterman, 1994; Littman et al., 1995), or MDPs, and POMDPs, their Partially Observable counterpart (White, 1991; Kaelbling et al., 1998). B...
متن کاملQuasi-Deterministic Partially Observable Markov Decision Processes
We study a subclass of POMDPs, called quasi-deterministic POMDPs (QDET-POMDPs), characterized by deterministic actions and stochastic observations. While this framework does not model the same general problems as POMDPs, they still capture a number of interesting and challenging problems and, in some cases, have interesting properties. By studying the observability available in this subclass, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Robotics
سال: 2023
ISSN: ['1552-3098', '1941-0468', '1546-1904']
DOI: https://doi.org/10.1109/tro.2022.3200138